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ABSTRACT: Generalized metric spaces are a common generalization of preorders and ordi-
nary metric spaces. Every generalized metric space can be isometrically embedded in a complete
function space by means of a metric version of the categorical Yoneda embedding. This simple
fact gives naturally rise to: 1. a topology for generalized metric spaces which for arbitrary pre-
orders corresponds to the Alexandroff topology and for ordinary metric spaces reduces to the -
ball topology; 2. a topology for algebraic generalized metric spaces generalizing both the Scott
topology for algebraic complete partial orders and the e-ball topology for metric spaces.

1. INTRODUCTION

Partial orders and metric spaces play a central role in the semantics of
programming languages (see, e.g., [21] and [3]). Parts of their theory have
been developed because of semantic necessity (see, e.g., [18] and [1]). Gen-
eralized metric spaces provide a common framework for the study of both
preorders and ordinary metric spaces. A generalized metric space (gms for
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short) consists of a set X together with a distance function X(-, -): X x X —
[0, ] satisfying, for all x, y, and z in X,

1. X(x,x) =0and

2. X(x, 2) = X(x, y) + X(y, 2)-
Clearly every ordinary metric space is a gms. A preorder = on X can be rep-
resented by the gms X with

0 ifxsy

Xy =] iy

for x and y in X. Reflexivity and transitivity of <imply 1. and 2., respective-
ly. By a slight abuse of language, any gms stemming from a preorder in this
way will itself be called a preorder.

In this paper we propose two topologies for gms’s. The first one is a gen-
eralized Alexandroff topology. For preorders it coincides with the Alexan-
droff topology while for metric spaces it corresponds to the e-ball topology.
The second one is a generalized Scott topology. For algebraic complete par-
tial orders it corresponds to the Scott topology, while for metric spaces it co-
incides with the e-ball topology. Both topologies are defined in two ways:
by specifying the open sets and by a closure operator. These two alternative
definitions are shown to coincide.

QOur definition of the generalized Alexandroff topology in terms of open
sets is similar to the ones given by Smyth [15], [16] and Flagg and Kopper-
man [5]. A definition of a generalized Scott topology in terms of open sets
similar to ours is briefly mentioned by Smyth in [15].

The definition of the generalized Alexandroff topology in terms of a clo-
sure operator already appears in [10], [11], [9]. New is the definition of the
generalized Scott topology in terms of a closure operator. Both closure op-
erators are defined by means of an adjunction between preorders. In defining
these adjunctions we use the fact — first observed by Lawvere [10] — that,
intuitively, one may identify elements x of a gms X with a description of the
distances between any element y in X and x. Formally, this description is a
function mapping every y in X to the distance X(y, x). These functions from
X to [0, =] can be interpreted as fuzzy subsets of X. The value a function ¢
assignsto an elementy in X is thought of as a measure for the extent to which
y is an element of ¢. This fact corresponds to a generalized metric version of
the categorical Yoneda lemma [22]. The corresponding Yoneda embedding
isometrically embeds a gms X into the gms of fuzzy subsets of X. By com-
paring the fuzzy subsets of X with the ordinary subsets of X we obtain an ad-
junction. This adjunction gives rise to the closure operator defining the
generalized Alexandroff topology. Similarly, an algebraic gms X can be iso-
metrically embedded into the gms of fuzzy subsets of its basis B. By com-
paring the fuzzy subsets of B with the subsets of X we obtain another
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adjunction inducing the closure operator defining the generalized Scott to-
pology.

Like the ordinary Scott topology for complete partial orders, the general-
ized Scott topology encodes all information about order, convergence, and
continuity (cf. [16]). The generalized Alexandroff topology only encodes the
information about order, just like the ordinary Alexandroff topology for pre-
orders (cf. [15], [5]).

The paper is organized as follows. Section 2 and 4 give some basic defi-
nitions and facts on gms’s. The Yoneda lemma and the generalized Alexan-
droff topology are discussed in Section 3, while the generalized Scott
topology is presented in Section 5. Finally, in Section 6 some related work
is discussed.

2. GENERALIZED METRIC SPACES

In this section and Section 4 some basic facts and definitions on gms’s are
presented. This section is concluded with a table containing the preorder and
ordinary metric notions corresponding to the notions introduced below.

An important example of a gms is the set of (extended) real numbers
[0, ] with the distance function defined, for r and s in [0, ], by

0 ifrzs

[0, %10, 5) =

s—-r ifr<s.

This gms is a quasimetric space (qms for short): besides the axioms 1. and
2. of the introduction it also satisfies, for all x and y in X, if X(x, y) = 0 and
X(y, x) =0 then x = y. The gms [0, o] has the following fundamental proper-
ty. For all r, s, t in [0, o],

r+s=t ifandonlyifr=z][0, ©](s, ). 1)

The above equation expresses that the category with the elements in [0, ]
as objects and the relation = defining the morphisms is a closed category
with + as tensor. Many properties of gms’s derive from this categorical
structure on [0, o].

The gms opposite to a gms X, denoted by X, is the set X with the distance
function defined, for x and y in X, by

X (x, Y) =X(y, x)-

Let X and Y be gms’s. A function f: X — Y is nonexpansive if, for all x
and y in X,

Y(f(x), f)) = X(x, ).
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If the above inequality always is an equality then f is said t)? be isometr'ic.
The set of nonexpansive functions from X to Y, denoted by Y, together with
the distance function defined, for f and g in Y%, by

YX(f, 8) = sup Y(f(x), 8(®)),

is a gms. .

As we have seen in the introduction, a preorder can be viewed as a gms.
Conversely, a gms gives rise to a preorder. The underlying preorder of a gms
X is defined, for x and y in X, by

xsyy ifandonlyif X(x,y) =0.

The preorder and metric notions corresponding to the ones introduced
above are listed below.

gms preorder metric space
gms partial order metric space
opposite opposite identity
nonexpansive monotone nonexpansive
isometric order equivalence isometric
underlying preorder preorder identity relation

3. A GENERALIZED ALEXANDROFF TOPOLOGY

We present a generalized Alexandroff topology for gms’s. The following
lemma turns out to be of great importance for the definitions of topologies
for gms’s as we shall see below and in Section 5. It is the [0, ®]-enriched
version of the famous Yoneda lemma [22], [8] from category theory.

For a gms X, let X denote the nonexpansive function space

X’ = [0, OO]XOI'.

An element ¢ inX can be interpreted as a fuzzy subset of X. The value that ¢
assigns to an element x in X is thought of as a measure for the extent to which
x is an element of ¢. The smaller this number, the more x should be viewed
as an element of ¢. Every gms can be mapped into the gms X of its fuzzy sub-
sets by the Yoneda embedding y: X — X which is defined, for x in X, by

y(x) =N\ EX. X (y, x).

Note that the nonexpansiveness of y(x) is an immediate consequence of con-
dition 2. of the introduction and (1).
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LEMMA 3.1: (Yoneda) Let X be a gms. For all x in X and ¢ in X,

X(y@), ) = 4(x).
Proof: Letxbein X and ¢ be inX.
¢(x) = [0, @] (X(x, x), $(x))
= sup [0, ©](X(y, x), ¢(»))
yeEX

=X(y(x), 9)

Because ¢ is nonexpansive, for all y in X,

[0, =](9(x), 9()) = XP(x, y) = X(y, x) = Y(x)(¥)-
According to (1), this is equivalent to
[0, ] (Y(x)), $0)) = (%)
Consequently,X’(y(x), ¢) =d(x). O
The following corollary is immediate.

COROLLARY 3.2: Let X be a gms. The Yoneda embedding y: X —Xis
isometric.

The closure operator defining the generalized Alexandroff topology for a
gms X is obtained by comparing the fuzzy subsets of X with the ordinary sub-
sets of X. Given a fuzzy subset ¢ in X, by taking only its real elements, i.e.,
the elements x in X for which ¢(x) = 0, we obtain its extension

ea(9) = {x € X|¢(x) = 0},
where the subscript A stands for Alexandroff. Note that
ea(9) = {x EX|¢(x) =0}
={x EXl)A((y(x), ¢) = 0} [Yoneda lemma 3.1]
= {x EX|y(x) sz ¢}
Any subset V in P(X) defines a fuzzy subset kK4(V) in X which is referred to
as the character of the subset V. It is defined by
ka(V) =2x €X. inf X(x,v).
vVEV

The closer an element x in X is to the subset V, the more x should be viewed
as an element of the character of V. Note that

ka(V) = A €X. inf y()()-
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The functions e,: X = P(X)and k,: P(X) — X can be nicely related by con-
S|der1ngX with the underlying preorder <3 and P(X) ordered by subset in-
clusion.

PROPOSITION 3.3:  Let X be a gms. The functions e,: (X, <3) - (PX),9)
and k: (P(X), ©) — (X, s3) are monotone. Moreover, Ky is left adjoint to €,.

Proof: Monotonicity of e4 and ks follows directly from their defini-
tions. We will hence concentrate on the second part of the proposition by
proving, for all Vin P(X) and ¢ inX, VCea(ky(V)) and ky(€4(9)) si ¢, which
is equivalent to k, being left adjoint to 4 (cf. Theorem 0.3.6 of [7]). Be-
cause, for all Vin P(X) and v in V, y(v) sg k4(V), we have that

VC {x €X|y(x) sg ky(V)} = €a(Ka(V))-

Furthermore, for ¢ inX and x in X,

ka(Ga@)(x) = inf{X(x, y)ly EX A y(y) sk ¢}
= inf{y(y)(x)|y EX A Vz EX: y()(2) = §(2)}
= inf{y(y)()|y €X A y()(x) = ¢(x)}
= ¢(x)-

Consequently, ky(€4(¢)) sy ¢. (Note that the ordering underlying [0, %] is the
opposite of the usual ordering.) Q

The above fundamental adjunction relates the character of subsets and the
extension of fuzzy subsets and is often referred to as the comprehension
schema [10], [9]. As with any adjoint pair between preorders, the composi-

tion €4 © k4 is a closure operator on X (cf. Theorem 0.3.6 of [7]). It satisfies,
for Vin P(X),

(84 ° ka)(V) = {x € X|ky(V)(x) = 0}

={x€E X|3((y(x), ka(V)) = 0} [Yoneda lemma 3.1]

= {x EX|Vy €X: [0, @] (y(x)(), ka(V)(»)) = 0}

= {xEX|Vy EX: y(x)() = ke (V)()}

={xEX|VYEX: Ve>0: X(y,x) <e = EV: X (y,v) <e}. (2)
By using the above characterization (2) we can prove the following theorem.

THEOREM 3.4: Let X be a gms. The closure operator €4 ° K4 on X is to-
pological.

Proof: Itis an immediate consequence of (2) that (84 © ky)(D) = . Be-
cause €, ° ky is a closure operator, for V, W in P(X),

(4 © ka)(V) U (&4 © kg)(W) C (&4 © k)(V U W).
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For the reverse inclusion, let x be in (g4 ° Ky)(V U W). Suppose x is not

in (g4 ° kyq)(V). We will show that x is in (e4 o k4)(W). Let yy be in X and
gy > 0 with X(yy, x) < gyy. We should find a w in W with X(yy ,w) < ey. Be-
cause x is not in (€4 © K4)(V), there exist a yy in X and an gy > 0 such that

Xy, x) <ey AYvEV: X(yy, v) = gy 3)

Let e = min{ey - X(yv, x), ew — X(yw, X)}. Because x is in (84 o K. (VU W)
and X(x, x) < €, there exists aw in V U W with X(x, w) < & . The assumption
that w is in V contradicts (3), because

X(y‘/, W) SX(yv, X) +X(X, W) < Ep.
Thus w is in W. Furthermore,
XOw w) = X(yw, x) + X(x,w) <ew. Q

The above theorem implies that the closure operator €4 © kK, induces a to-
pology on X. In Theorem 3.5 below, it is proved equivalent to the following
generalized e-ball topology. For x in X and ¢ > 0, we define the generalized
e-ball of x by

Be(x) = {y EX'X(x, y) <e}.

A subset V of a gms X is generalized Alexandroff open (gA-open for
short) if, for all x in V,

Je > 0: B(x) S V.

For instance, for every x in X, the generalized e-ball B.(x) is gA-open. The
set of all gA-open subsets of X is denoted by O4. One can easily verify that
Ogu is a topology on X with {B¢(x)|e > 0 A x EX} as basis.

For ordinary metric spaces, the above introduced generalized e-balls are
as usual, while for preorders they are upper-closed sets: if X is a preorder
then

Bi(x) ={y €X|X(x,y) <¢}
= {y €X|X(x, y) = 0}
={y EX|x sxy}. 4)
Consequently, the generalized Alexandroff topology restricted to metric
spaces is the e-ball topology, while restricted to preorders it is the ordinary
Alexandroff topology.

For V in P(X), we write cl (V) for the closure of V in the generalized Al-
exandroff topology.

THEOREM 3.5: Let X be a gms. For all V in P(X), cla(V) = (84 © kK4)(V).
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Proof: For every topology O on X, the induced topological closure op-
erator cl on X satisfies, for all V in P(X), cl(V) = V U V¢, where V4 is the
derived set, the set of all accumulation points, of V. It follows from this fact
and characterization (2) of €4 ° kg that it is sufficient to prove

VUV = {x EX|Yy EX: Ve > 0: X(y, x) <e = Iv EV: X(y, v) < &} %)

From the definition of accumulation point and the fact that the set of all gen-
eralized e-balls is a basis for the generalized Alexandroff topology, it fol-
lows that, for every x in X,

xEVE S YWED  xEW=WNV\{(x}) =D
o Wy EX: Ve > 0: x EB,(y) = B,(») N (V\{x}) =@
< Vy EX: Ve > 0: X(y, x) <& = W E(V\{x}): X(y, v) < &. 4)

Therefore, (5) holds. Q

Every topology O on X induces a preorder on X called the specialization
preorder: for all x and y in X, x sg y if and only if, for all Vin O, ifx is in V
then y is in V. The specialization preorder on a gms X induced by its gener-
alized Alexandroff topology coincides with the preorder underlying X.

PROPOSITION 3.6: Let X be a gms. For all x and y in X, x =g,y if and
only if x sy y.

Proof: For any gA-open set V, if x is in V and X(x, y) =0 then y is in V.
From this observation the implication from right to left is clear. For the con-
verse, suppose x sg,, y. Then, for every & > 0, x is in B¢(x) implies y is in
B.(x), because generalized e-balls are gA-open sets. Hence X(x, y) < €. Since
e was arbitrary, X(x, y) =0, thatisx sy y. QO

The above proposition tells us that the underlying preorder of a gms can
be reconstructed from its generalized Alexandroff topology.
Note that the specialization preorder =g, is a partial order — this is

equivalent to the generalized Alexandroff topology being Ty — if and only
if X is a qms.

4. CAUCHY SEQUENCES, LIMITS, AND COMPLETENESS

Some further basic facts and definitions on gms’s are presented. Like Sec-
tion 2, this section is concluded with a table containing the preorder and or-
dinary metric notions corresponding to the notions introduced below.

A sequence (x,), in a gms X is forward-Cauchy if
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Ve>0:3IN:Vnzm=N: X(x,, x,) = ¢.

Since our distance functions need not be symmetric, the following variation
exists. A sequence (x,), is backward-Cauchy if

Ve>0:IN:Vnzm=N: X(x,, x,,) s &.
The forward-limit of a forward-Cauchy sequence (r,), in [0, «] is given by

lim,r, = sup inf ry.
n kzn

Dually, the backward-limit of a backward-Cauchy sequence (r,), in [0, ] is
defined by
im,r, = inf supr,.

h n kzn
Forward-limits and backward-limits in [0, o] are related as follows. For all
forward-Cauchy sequences (r,), in [0, ] and r in [0, ],

[0, m](E!)nnrm r) = li_mn [O: oo](rn, r)' (6)

Forward-limits in an arbitrary gms can now be defined in terms of backward-
limits in [0, ®]. An element x is a forward-limit of a forward-Cauchy se-
quence (x,), in a gms X, denoted by x € lim,x,, if, for all y in X,

X(x, y) = lim, X(x,, y).

Note that if (x,), is a forward-Cauchy sequence in X, then, for all y in X,
(X(xp, y)), is a backward-Cauchy sequence in [0, ©] because of (1). Our ear-
lier definition of the forward-limit of forward-Cauchy sequences in [0, ] is
consistent with this definition for arbitrary gms’s because of (6). Similarly
one can define backward-limits in an arbitrary gms. Since these will not play
a role in this paper, their definition is omitted. For simplicity, we shall use
Cauchy instead of forward-Cauchy and limit instead of forward-limit. Note
that Cauchy sequences may have more than one limit. Let (x,), be a Cauchy
sequence in a gms X and x be in X, with x €lim,x,,. For all y in X,

€ lim,x, if and only if X(x, y) =0 and X(y, x) =0. @)
y —>

Consequently, limits are unique in qms’s. In that case we sometimes write
X = llm,,x,,

Ag gms X is complete if every Cauchy sequence in X has a limit. For ex-
ample, [0, ®] is complete. Let X and Y be gms’s. If Y is complete then YXis
also complete (cf [14, Theorem 6.5]). Consequently, for every gms X, the
function spaceX is complete.! Limits of the complete function space YX are
taken pointwise. For all Cauchy sequences (f,), in YXand f in Y,
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fE€lim,f, if and only if, for all x in X, f(x) € lim, (fx(x))- ®)

Let X and Y be gms’s. A nonexpansive function f: X — Y is continuous if
it preserves limits: for all Cauchy sequences (x,), in X and x in X, with
x€ mnnxm fx) € !_i_,mn JCxn).

The preordered notion finite can be generalized as follows. An element x
in a gms X is finite if the function Ay € X . X(x, y) from X to [0, =] is contin-
uous. In order to conclude that x is finite in X, it suffices to prove that, for
all Cauchy sequences (y,), in X and y in X, with y €lim, y,, lim, X(x, y,) =
X(x, y). For example, for all x in X, one can show that

y(x) is finite inX 9)

(cf. [2, Lemma 4.3]).

A subset B of finite elements of a gms X is a basis for X if every element
in X is a limit of a Cauchy sequence in B. A gms is algebraic if there exists
a basis. Such a basis is generally not unique.

Below we give the table with the corresponding preorder and metric no-
tions.

gms preorder metric space
forward-Cauchy eventually increasing Cauchy
backward-Cauchy eventually decreasing Cauchy
forward-limit eventually minimal upperbound|  limit
backward-limit eventually maximal lowerbound|  limit
complete w-complete complete
continuous w-continuous continuous
finite finite arbitrary
basis basis dense subset
algebraic algebraic arbitrary

5. A GENERALIZED SCOTT TOPOLOGY

In the Scott topology of a complete partial order X least upperbounds of
increasing sequences in X are topological limits. Also, in the &-ball topology
of an ordinary metric space, X limits of Cauchy sequences in X are topolog-

'As a consequence, the Yoneda embedding y isometrically embeds a gms X into the com-
plete gms X. One can define the completion of X as the smallest complete subspace of X con-
taining the y-image of X. For details we refer the reader to [2].
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ical limits. However, a similar result does not hold for our generalized Al-
exandroff topology. For example, for complete partial orders the generalized
Alexandroff topology coincides with the ordinary Alexandroff topology, for
which this result does not hold in general. The Scott topology is the coarsest
topology refining the Alexandroff topology with this property (cf.[7], [12],
[17]). Also for gms’s a suitable refinement of the generalized Alexandroff
topology exists.

A key step towards the definition of the generalized Scott topology for al-
gebraic gms’s is the following restriction of the Yoneda embedding.

LEMMA 5.1: Let X be a gms. If B is a basis for X, then the function
yg: X — B defined, for x in X, by
yg(x) = Ab € B. X(b, x)

is isometric and continuous.

Proof: According to Corollary 3.2, y is isometric. Consequently, Yp is
nonexpansive. According to (8), to prove that yg is continuous it suffices to
show that, for all Cauchy sequences (x,), in X and x in X, with x € lim, x,,
and b in B,

yp(x)(b) € lim, Yp(x,)(b)-

This follows immediately from the fact that b is finite in X. The function yp
is isometric, because, for x and y in X, since B is a basis there exist Cauchy
sequences (b,), and (c,), in B such that x €lim, b, and y € lim, c,, and

§(yB(-x)7 ys(»)) = l‘i_mmB(yB(bm)’ ya(y)) Ix€ limy by, Yp is continuous]

= Li_m,,,l_i_)m,,B(yAb,,,), ye(cn) [ve lim, ¢, Yg is fominuous,
ys(b,,) is finite in B according to (9)]

lim,lim, B(b,, c,) [Corollary 3.2]

—

Li__mmli,mn X(bms Cn)
= Li_mmX(bm, y) [y €limycp, by is finite in X]
=X(x,y). [x€limyb,] Q
The converse of the above lemma holds as well (cf. [2, Theorem 5.6]).
The closure operator defining the generalized Scott topology for an alge-
braic gms X with basis B is obtained by comparing the fuzzy subsets of B,
rather than the fuzzy subsets of X as we have done in Section 3, with the or-
dinary subsets of X. The extension function e5: B — P(X) is defined, for ¢ in
B, by
es(9) = {x EX|ys(x) s ¢}
and the character function kg: P(X) — B is defined, for V in P(X), by
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ks(V) = hb € B. inf | yp(v)(b)-

As in Proposition 3.3, the functions es: (B, s5) — (P, (X), ) and
ks: (P(X),C) — @3, <p) are monotone and Kg is left adjoint to eg. Thus,
eg ° Kgis a closure operator on X. Since a basis is generally not unique, one
might think that the definition of the closure operator € ° Kg depends on the
choice of the basis. That this is not the case is a consequence of Theorem 5.6
below. In a way similar to (2), this closure operator can be characterized, for

Vin P(X), by
(es o kg)(V) =

{xEX|VbEB: Ve >0: X(b,x) <e=IvEV: X(b,v) <e}. (10)
Also this closure operator is topological.

THEOREM 5.2: Let X be an algebraic gms. The closure operator €5 © Kg
on X is topological.

Proof: This theorem is proved along the same lines as Theorem 3.4, but
one needs the following additional observation. If B is a basis for X then, for
any by and by in B, gy, gy > 0, and x in X, such that X(by, x) < ey and
X(bw, x) < ey, there exists a b in B such that X(by, b) < ey, X(bw, b) < &y, and
X(b, x) < &, where £ = min{ey - X(by, b), ey — X(bw, b)}. This fact can be
proved as follows. Because X is an algebraic gms with B as basis, there exists
a Cauchy sequence (b,), in B with x € lim, b,. Because

gy > X(bV: x)
= l_igx,,X(bV, b, [xe lim, by, by is finite in X],
there exists an Ny such that, for all n = Ny, X(by, b,) < ey. Similarly, there
exists an Ny such that, for all n = Ny, X(by, b,) < ey. Since
0 =X(x,x)
= E_m,, X(bpx) xe lim, b,],

there exists an N such that, for all n = N, X(b,,x) < ¢. The element
bmax{NV,Nw,N} in B is the one we were looking for. QQ

Thus, the operator €5 ° kg induces a topology on X. In the case that X is a
preorder with basis B, for every V in P(X),

(€seoks)(V)={xEX|VDEB: bsyx=>IvEV: b sy},

which we recognize as the closure operator induced by the ordinary Scott to-
pology.
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Next, an alternative definition of this topology is given by specifying the
open sets (this time starting from a gms X). In Theorem 5.6 below, it will be
shown that the two definitions coincide whenever X is algebraic.

A subset V of a gms X is generalized Scott open (gS-open for short) if, for
all Cauchy sequences (x,), in X and x in V, with x € lim,x,,

Je>0:3N:Vn=N:B(x,) TV
The following proposition gives an example of gS-open sets.

PROPOSITION 5.3:  Let X be a gms. An element b in X is finite if and only
if, for all € > 0, the set B(b) is gS-open.

Proof: Let b be finite in X and ¢ > 0. We have to show that the general-
ized e-ball B,(b) is gS-open. Let (x,), be a Cauchy sequence in X and x be in
B(b), with x € lim,x,. It suffices to prove that

33>0:3IN:Vnz=N:X(b,x,) <e - 9. 11
Because x is in B¢(b), we have that 36 > 0: X(b, x) < & - 8. Since
e-0 > X(b,x)
= li)m,,X(b, X, [x€ lim, x,, b is finite in X]
and the sequence (X(b, x,)), is Cauchy, we can conclude (11).

Conversely, assume that, for all € > 0, the set B.(b) is gS-open. Let (x,),
be a Cauchy sequence in X and x be in X, with x € l_i_)m,,x,,. Then

Ve > 0: x € By, v +:(b)-
Because the set By, )+ (b) is gS-open,
Ve>0:30>0:3N: VnzN:By(x,) S Byp, x+(b)
Hence, lim,X(b, x,) s X(b,x). Q

The set of all gS-open subsets of X is denoted by Og. This collection
forms indeed a topology.

PROPOSITION 5.4:  Let X be a gms. O is a topology on X. If X is alge-
braic with basis B, then the set {B(b)|e >0 A b € B} forms a basis for Ogg.

Proof: One can easily verify that O is closed under finite intersections
and arbitrary unions. We will only prove that, for an algebraic gms X with
basis B, every gS-open set V in P(X) is the union of generalized e-balls of
finite elements. Let x be in V. Since X is algebraic, there is a Cauchy se-
quence (b,), in B with x €lim, b,. Because V is gS-open and x € lim, b,,

Je, > 0: AN,: Vn = N2 B (b,) SV A x B, (by).
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Therefore, VC U, ¢ vB. (by,). Since the other inclusion trivially holds we
have that the collection of all generalized e-balls of finite elements forms a
basis for O, QO

Note that every gS-open set is gA-open, because every element x in a gms
X is a limit of the constant Cauchy sequence (x),. Therefore, the generalized
Scott topology refines the generalized Alexandroff topology.

Any ordinary metric space X is an algebraic gms in which all elements
are finite. Therefore, by the previous proposition, the basic open sets of the
generalized Scott topology are all the generalized e-balls. Hence, for ordi-
nary metric spaces the generalized Scott topology coincides with the stan-
dard e-ball topology.

For a preorder,? a subset is gS-open precisely when it is Scott open as is
shown in the following proposition. Consequently, the generalized Scott to-
pology restricted to preorders is the ordinary Scott topology.

PROPOSITION 5.5:  Let X be a preorder. A set Vin P(X) is gS-open if and
only if:
1. forallx, yin X, if xis in V and x <y y then y is in V, and
2. for all sequences (x,), in X satisfying, for all n, x,, <y x,, , 1, and x in V,
with x € lim, x,,

3N:xNEV.

Proof: Assume the set V in P(X) is gS-open. Let x, y be in X with x in
V and x sy y. Because V is gS-open, and hence gA-open,

Je>0:B,(x) C V.

Since x sy y, we have that y is in B(x) and consequently y is in V. Let (x,),
be a sequence in X satisfying, for all n, x, sy x,, ;, and x be in V, with
x €lim,x,. Clearly, the sequence (x,), is Cauchy. Because V is gS-open,

Je>0:3IN: Vn=N:B,(x,) C V.

Hence, xy is in V.
For the converse, assume 1. and 2. Let (x,), be a Cauchy sequence in X
andxbein V, withx € im,,x,,. Because X is a preorder, there exists an N such

that, for all n, xy , , sy Xy, 4 1. One can easily verify that x € lim,xy, .- Ac-
cording to 2., -

3M:xN+MEV.

From 1. we can conclude that, forallm = M, xy, ,,isin V. Again using 1. and
(4) we can deduce that, for all m = M, By(xy,,) C V. Q

2Altho.ugh the Scott topology is usually only defined for complete partial orders, the
construction also produces a topology for preorders. '
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To reconcile the Scott topology for preorders with the e-ball topology for
metric spaces, one could define topologies on gms’s which are finer than our
generalized Scott topology. For example, call a subset V of a gms X naive
generalized Scott open (ngS-open for short) if V is generalized Alexandroff
open and, for all Cauchy sequences (x,), in X and x in V, withx € lim, x,,

AN:Vnz=N:x,EV.

Evidently, every gS-open set is ngS-open. Next we show that the naive gen-
eralized Scott topology is strictly finer than our generalized Scott topology
and that the second part of Proposition 5.4 does not hold for the naive gen-
eralized Scott topology. Consider the set

X ={xy, xp, ...,} U {x}, x% ...} U {x},

with the distance function defined by the following diagram.

x! X2

%T %T
%) Ya

Xe———>> X — > ... X

If there is no path from y to z then X(y, z) = 1. Otherwise, X(y, z) is the max-
imum of the labels of the path from y to z. For example, X(x;, x) = ¥% and
X(x, x;) = 1. One can easily verify that, for all n, both x, and x" are finite in
X and that x €lim,x,. Consequently, X'is an algebraic gms with basis X\{x}.
Consider now the set

V= {x,xp, ...} U {x}.

Obviously, the set V is ngS-open. However, it is not gS-open as can be
proved as follows. By Proposition 5.4, the set

{(B(b)|e >0 A bEX\{x}}

forms a basis for the generalized Scott topology of X. Towards a contradic-
tion, assume that V is gS-open. Since x is in V and the above set is a basis,
there exists an € > 0 and a b in X\{x} such that x is in B¢(b) C V. Because b
is in B,(b) C V, we have that b =x, for some n. Hence X(x,, x) < ¢. By defi-
nition, X(x,, x) = 27", thus 27" < &. Since X(x,, x") = 27", we have that x" is in
V, a contradiction. The above not only proves that V is not gS-open, but it
also shows that the set {B¢(b)|e > 0 A b € B} cannot be a basis for the naive
generalized Scott topology.

As already announced, we show that the definitions of the generalized
Scott topology defined in terms of the closure operator € © Kg and the one
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defined in terms of open sets coincide. For Vin P(X), we write clg(V) for the
closure of V in the generalized Scott topology defined in terms of open sets.

THEOREM 5.6: Let X be an algebraic gms. For all V in P(X), clg(V) =
(es° kg)(V).

Proof: This theorem can be proved along the same lines as Theorem 3.5.
It follows from characterization (10) of €g © kg and the fact that the general-
ized e-balls of finite elements form a basis for the generalized Scott
topology. O

Since the definition of the closure operator clg does not use the basis, the
above theorem implies that the choice of the basis is irrelevant for the defi-
nition of the closure operator €g © K.

A subset V of a gms X is generalized Scott closed (gS-closed for short) if
its complement X\V is gS-open. This is equivalent to the following condi-
tion. For all Cauchy sequences (x,), in X and x in X, with x € lim, x,,

(Ve>0:VN:InzN:FyeV: X(x,,y)<e)=xEV.

Note that if Vis a gS-closed set and (x,), is a Cauchy sequence in V, then all
its limits should belong to V. Consequently, if V is a subset of X and (x,),, is
a Cauchy sequence in V, then all its limits belong to c/g(V). This implies that
if B is basis for X then X C c/g(B). The converse inclusion is obvious. Hence,
the basis B of an algebraic gms X is dense in X.

The following lemma, due to Flagg and Siinderhauf, gives an example of
gS-closed sets.

LEMMA 5.7:  Let X be a gms. For all x in X and & 2 0, the set BP(x) =
{y € X|X(y, x) s 8} is gS-closed.

Proof: Let (z,), be a Cauchy sequence in X and z be in X, with
z €lim, z,, and

Ve>0:VN:3n=N: 3y EBE(x): X(z,, y) < &.
Then
Ve>0:VYN:3n2N: X(z,,x) < & + o.
Because the sequence (z,), is Cauchy,
Ve>0:3IN:Yn=N: X(z,, x) < € + d.
Consequently, lim, X(z,, x) = §, and hence X(z, x) s 5. O

Like ‘the generalized Alexandroff topology, the generalized Scott topolo-
8y provides us all information about the underlying preorder.
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PROPOSITION 5.8: Let X be a gms. For all x and y in X, x S0, y if and
only ifx sy y.

Proof: For any gS-openset V, if x is in Vand X(x, y) =0, then y is in V.
From this observation, the implication from right to left is clear. For the con-
verse, suppose X(x, y) = 0. Then x is in X\BF(y) but y is not in X \BP(y).
Since, by Lemma 5.7, the set X\BJ(y) is gS-open it follows that
x %Ogsy. a

An element x is a topological limit of a sequence (x,), in a topology O,
denoted by x € limg , X, if, for all Viin O with x in V,

AN:Vn=z=N:x,EV.

The generalized Scott topology also encodes all information about conver-
gence.

PROPOSITION 5.9: Let X be a gms. For all Cauchy sequences (x,), in X
and x in X, with x €lim, x,,, and y inX,ye limogs’,,x,, if and only if y =g  x.

Proof: Clearly x € limQ, g n X, and hence y < x implies y € limo g X
For the converse, let y € limogs’,, X,. Assume y %ogsx. According to Propo-
sition 5.8, there is a & > 0 such that X(y, x) % 8. Hence, y is in X\Bgf(x),
which is a gS-open set by Lemma 5.7. Since y € limg g » X,

AN: Vn =z N:x, €X\BP(x).

But
0 =X(x, x)
= l(i_m,,X(x,,, x) [x€E€lim,x,]
SO

IM:Vm=2M: X(x,, x) <d.
This gives a contradiction. Therefore, y sg,¢x. O

From the above proposition we can conclude that in a gms every Cauchy
sequence topologically converges to its metric limits. However, not every
topologically convergent sequence is Cauchy. For example, provide the set
X =1{1,2, ..., o} with the distance function

0 ifx=y
X(x,y)={1lnifx=wandy=n

1 otherwise.
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Then X is an algebraic complete qms with X itself as basis, since there are
no nontrivial Cauchy sequences. The sequence (n), topologically converges
to o but is not Cauchy.

Continuity is also encoded by the generalized Scott topology.

PROPOSITION 5.10: Let X and Y be complete gms’s. A nonexpa.nsive
function f: X — Y is metrically continuous if and only if it is topologically
continuous.

Proof: Let f: X — Y be a nonexpansive and metrically continuous func-
tion and let V in P(Y) be gS-open. We need to prove that V) in P(X) is
gS-open in order to conclude that f is topologically continuous. Indeed, for
any Cauchy sequence (x,), in X and x in X, with x € lim, x,,, we have

xEfN(V) = f(x)EV
=3e>0:IN: Vnz2N: B(f(x,)) CV

[f is metrically continuous, V is gS-open]

=3e>0:3IN:VnaN:By(x,) Cf (V)

[f is nonexpansive]

For the converse, assume f: X — Y is topologically continuous and let (x,),
be a Cauchy sequence in X and x be in X, with x € lim, x,. Lety € lim, f(x,).
According to (7) it suffices to prove that Y(y, f(x)) = =0 and Y(f(x),y) =0.We
have that

YO, fx) = l(_i_{n,, Y(f(xn), f(x)) v € I_H“n feem]
= 1im, X(x,, x) [f is nonexpansive)
=X(x, x) [x El_i)m,,x,,]
=0.

According to Proposition 5.9, x €limp .s.n¥n: Because fis continuous, f(x) €
limp Snf(x,,) Using Proposition 5.9 again, we can conclude that f(x) 50,5 Y-
By Proposmon 5.8, Y(f(x),y)=0. QO

6. RELATED WORK

In this paper we have presented two topologies for gms’s. The main con-
tribution of our paper is the reconciliation of the enriched categorical ap-
proach of Lawvere [10], [11] (cf.[9], [19], [20]) and the topological
approach of Smyth [15], [16] (cf. [5]). The present paper continues the work
of Rutten [14] and is part of [2]. In the latter paper, besides the topologies
presented in this paper, completion and powerdomains for generalized ultra-
metric spaces are also defined by means of the Yoneda embedding.
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The basic definitions and facts on ordered spaces, metric spaces and to-
pology, and gms’s are taken from [7], [13], and [4], [17], and [16], [19], [14],
respectively.

Smyth [16], and Flagg and Kopperman [5] have represented algebraic
complete partial orders by another gms than the one given in the introduc-
tion. The distance function they use is in general not two-valued. In that
case, the generalized Alexandroff topology reconciles the Scott topology for
algebraic complete partial orders and the e-ball topology for metric spaces.
This approach is simpler than ours, since much of the standard theorems for
ordinary metric spaces can be adapted. The price to be paid for this simplic-
ity is that most of their results only hold for a restricted class of spaces: they
have to be spectral.

Wagner [20] has also presented a generalized Scott topology. Although
for complete partial orders his topology corresponds to the Scott topology,
for metric spaces it does not coincide with the e-ball topology.

Recently, Flagg and Siinderhauf [6] have proved that our generalized
Scott topology of an algebraic complete qms arises as the sobrification of its
basis taken with the generalized Alexandroff topology.
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